Pathways of carbamazepine bioactivation in vitro. III. The role of human cytochrome P450 enzymes in the formation of 2,3-dihydroxycarbamazepine.

نویسندگان

  • Robin E Pearce
  • Wei Lu
  • Yongqiang Wang
  • Jack P Uetrecht
  • Maria Almira Correia
  • J Steven Leeder
چکیده

Conversion of the carbamazepine metabolite 3-hydroxycarbamazepine (3-OHCBZ) to the catechol 2,3-dihydroxycarbamazepine (2,3-diOHCBZ) followed by subsequent oxidation to a reactive o-quinone species has been proposed as a possible bioactivation pathway in the pathogenesis of carbamazepine-induced hypersensitivity. Initial in vitro phenotyping studies implicated CYP3A4 as a primary catalyst of 2,3-diOHCBZ formation: 2-hydroxylation of 3-OHCBZ correlated significantly (r(2) > or = 0.929, P < 0.001) with CYP3A4/5 activities in a panel of human liver microsomes (n = 14) and was markedly impaired by CYP3A inhibitors (>80%) but not by inhibitors of other cytochrome P450 enzymes (< or = 20%). However, in the presence of troleandomycin, the rate of 2,3-diOHCBZ formation correlated significantly with CYP2C19 activity (r(2) = 0.893, P < 0.001) in the panel of human liver microsomes. Studies with a panel of cDNA-expressed enzymes revealed that CYP2C19 and CYP3A4 were high (S50 = 30 microM) and low (S50 = 203 microM) affinity enzymes, respectively, for 2,3-diOHCBZ formation and suggested that CYP3A4, but not CYP2C19, might be inactivated by a metabolite formed from 3-OHCBZ. Subsequent experiments demonstrated that preincubation of 3-OHCBZ with human liver microsomes or recombinant CYP3A4 led to decreased CYP3A4 activity, which was both preincubation time- and concentration-dependent, but not inhibited by inclusion of glutathione or N-acetylcysteine. CYP3A4, CYP3A5, CYP3A7, CYP2C19, and CYP1A2 converted [14C]3-OHCBZ into protein-reactive metabolites, but CYP3A4 was the most catalytically active enzyme. The results of this study suggest that CYP3A4-dependent secondary oxidation of 3-OHCBZ represents a potential carbamazepine bioactivation pathway via formation of reactive metabolites capable of inactivating CYP3A4, potentially generating a neoantigen that may play a role in the etiology of carbamazepine-induced idiosyncratic toxicity.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

DMD #19562 Pathways of Carbamazepine Bioactivation In Vitro III. The Role of Human Cytochrome P450 Enzymes in the Formation of 2,3-Dihydroxycarbamazepine

Conversion of the carbamazepine metabolite, 3-hydroxycarbamazepine (3-OHCBZ), to the catechol, 2,3dihydroxycarbamazepine (2,3-diOHCBZ), followed by subsequent oxidation to a reactive o-quinone species has been proposed as a possible bioactivation pathway in the pathogenesis of carbamazepineinduced hypersensitivity. Initial in vitro phenotyping studies implicated CYP3A4 as a primary catalyst of ...

متن کامل

Pathways of carbamazepine bioactivation in vitro: II. The role of human cytochrome P450 enzymes in the formation of 2-hydroxyiminostilbene.

Conversion of the carbamazepine metabolite, 2-hydroxycarbamazepine, to the potentially reactive species, carbamazepine iminoquinone (CBZ-IQ), has been proposed as a possible bioactivation pathway in the pathogenesis of carbamazepine-induced hypersensitivity. Generation of CBZ-IQ has been proposed to proceed through the intermediate, 2-hydroxyiminostilbene (2-OHIS); however, data suggested that ...

متن کامل

Pathways of carbamazepine bioactivation in vitro I. Characterization of human cytochromes P450 responsible for the formation of 2- and 3-hydroxylated metabolites.

In vitro studies were conducted to identify the cytochromes P450 (P450s) involved in the formation of 2- and 3-hydroxycarbamazepine, metabolites that may serve as precursors in the formation of protein-reactive metabolites. Human liver microsomes (HLMs) converted carbamazepine (30-300 microM) to 3-hydroxycarbamazepine at rates >25 times those of 2-hydroxycarbamazepine. Both the 2- and 3-hydroxy...

متن کامل

Cytochrome p450 architecture and cysteine nucleophile placement impact raloxifene-mediated mechanism-based inactivation.

The propensity for cytochrome P450 (P450) enzymes to bioactivate xenobiotics is governed by the inherent chemistry of the xenobiotic itself and the active site architecture of the P450 enzyme(s). Accessible nucleophiles in the active site or egress channels of the P450 enzyme have the potential of sequestering reactive metabolites through covalent modification, thereby limiting their exposure t...

متن کامل

Biotransformation of the anthraquinones emodin and chrysophanol by cytochrome P450 enzymes. Bioactivation to genotoxic metabolites.

The studies presented here were designed to elucidate the enzymes involved in the biotransformation of naturally occurring 1, 8-dihydroxyanthraquinones and to investigate whether biotransformation of 1,8-dihydroxyanthraquinones may represent a bioactivation pathway. We first studied the metabolism of emodin (1, 3,8-trihydroxy-6-methylanthraquinone), a compound present in pharmaceutical preparat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Drug metabolism and disposition: the biological fate of chemicals

دوره 36 8  شماره 

صفحات  -

تاریخ انتشار 2008